\qquad
(1) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

$$
\Delta \mathrm{H}=-94.5 \mathrm{~kJ}
$$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ $\Delta \mathrm{H}=71.2 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+{ }^{7} / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\Delta \mathrm{H}=-283 \mathrm{~kJ}$
(2) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
$\Delta \mathrm{H}=-235.5 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}=-207 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta \mathrm{H}=44 \mathrm{~kJ}
$$

(3) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta \mathrm{H}=-115 \mathrm{~kJ}$
$2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=-142.5 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=-43.7 \mathrm{~kJ}$
(4) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=643 \mathrm{~kJ} \\
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow 2 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=190.6 \mathrm{~kJ} \\
2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=3511.1 \mathrm{~kJ}
\end{array}
$$

(5) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{CH}_{4} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2}(\mathrm{~g})$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}=22.5 \mathrm{~kJ}$
$\Delta \mathrm{H}=57.5 \mathrm{~kJ}$
$\Delta \mathrm{H}=81.2 \mathrm{~kJ}$
(6) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{~g})
$$

$$
\begin{array}{ll}
\mathrm{COCl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=47.5 \mathrm{~kJ} \\
2 \mathrm{HCl}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=105 \mathrm{~kJ} \\
\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})+\mathrm{H}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-402.5 \mathrm{~kJ}
\end{array}
$$

(7) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=283.5 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-213.7 \mathrm{~kJ} \\
2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+{ }^{7} / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=849 \mathrm{~kJ}
\end{array}
$$

(8) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{HCl}(\mathrm{~g})+\mathrm{NaNO}_{2}(\mathrm{~s}) \rightarrow \mathrm{HNO}_{2}(\mathrm{l})+\mathrm{NaCl}(\mathrm{~s})
$$

$$
\begin{array}{ll}
2 \mathrm{NaCl}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{O}(\mathrm{~s}) & \Delta \mathrm{H}=507 \mathrm{~kJ} \\
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s}) & \Delta \mathrm{H}=-427 \mathrm{~kJ} \\
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-43 \mathrm{~kJ} \\
2 \mathrm{HNO}_{2}(\mathrm{l}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=34 \mathrm{~kJ}
\end{array}
$$

(9) Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{Zn}(\mathrm{~s})+1 / 8 \mathrm{~S}_{8}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{~s})
$$

$$
\begin{array}{ll}
\mathrm{Zn}(\mathrm{~s})+1 / 8 \mathrm{~S}_{8}(\mathrm{~s}) \rightarrow \mathrm{ZnS}(\mathrm{~s}) & \Delta \mathrm{H}=-183.92 \mathrm{~kJ} \\
2 \mathrm{ZnS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-927.54 \mathrm{~kJ} \\
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-196.04 \mathrm{~kJ} \\
\mathrm{ZnO}(\mathrm{~s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{~s}) & \Delta \mathrm{H}=-230.32 \mathrm{~kJ}
\end{array}
$$

